ISOLATION OF A 3-EQUATORIAL-HYDROXYSTEROID DEHYDROGENASE FROM RAT LIVER MICROSOMES

S. W. GOLF and V. GRAEF

Zentrum für Biochemie, Universität Giessen, Friedrichstrasse 24, 63 Giessen, West Germany

Received 19 February 1976

1. Introduction

Saturated 3-oxosteroids are reduced to 3α - and 3β -hydroxysteroids by rat liver microsomes with NADH and NADPH as coenzymes [1-3]. The 3-hydroxysteroid dehydrogenases are most probably heterogeneous [4,5] and stereospecific with respect to 3α - and 3β -hydroxysteroids. Some reports, however, indicate a stereospecificity with respect to axial and equatorial 3-hydroxysteroids [6,7]. Recently we have solubilized the 3-hydroxysteroid dehydrogenase from rat liver microsomes and isolated a 3α -hydroxysteroid dehydrogenase which converts both 5α - and 5β -dihydrotestosterone (DHT) to the corresponding 3α -hydroxysteroids [7]. In the present paper we report on the isolation of an equatorial 3-hydroxysteroid dehydrogenase from liver microsomes of male rats.

2. Materials and methods

2.1. Liver microsomes

The preparation of liver microsomes from male rats (Wistar) and the solubilization with Lubrol, a non-ionic detergent, have been described [7].

2.2. Enzyme assay

The specific activities of 3α - and 3β -hydroxysteroid dehydrogenation in microsomes were determined with 5α -DHT and 5β -DHT as substrates. The reaction mixture contained in a final volume of 3.0 ml: 0.2 M Tris-HCl (optimal pH); 0.8 mM NADH (NADPH); 0.1 mM 5α -DHT (5β -DHT); 0.5 mg microsomal protein, and in the case of the inhibited reaction 10^{-4} M p-chloromercuribenzoate (PCMB). $T = 37^{\circ}$ C; 5 min incubation. The formed 3α- and 3β-hydroxysteroids were determined by gas-liquid chromatography [7]. The protein concentration was measured using to Folin method [8].

2.3. Preparation of the substituted Sepharose

Sepharose 4B was activated with cyanogen bromide and coupled with the spacer octamethylenediamine [7]. This modified Sepharose was used for the synthesis of 5α -DHT-Sepharose [7], PCMB-Sepharose [9] and 3β , 17β -dihydroxy- 5α -androstane-Sepharose. For the synthesis of the latter 3-oxo- 5α -androstane- 17β -yl-hemisuccinate [7] was reduced with NaBH₄. The reaction product containing 91% 3 β -hydroxy- 5α -androstane- 17β -yl-hemisuccinate and 9% of the 3α -hydroxysteroid derivative was coupled with octamethylenediamine-Sepharose according to the method used for the preparation of 5α -DHT-Sepharose [7].

2.4. Affinity chromatography

For washing and elution during affinity chromatography two buffer solutions were used: an undiluted buffer (0.01 M potassium phosphate buffer pH 7.0, containing 40% glycerol, 0.01 M EDTA, 0.5% Lubrol WX and 10^{-4} M thioglycerol) and a diluted buffer (1:4 diluted with water). Fractions of 16 ml were collected in all chromatographic procedures. The columns for affinity chromatography (5α -DHT-Sepharose, PCMB-Sepharose and 3β , 17β -dihydroxy- 5α -androstane-Sepharose) were equilibrated with diluted buffer. 40 ml of solubilized liver microsomes [7] were diluted 1:4 with water and applied to the 5α -DHT-Sepharose column (4×13 cm). The column was washed with 130 ml of the diluted buffer. Frac-

	Influence of p-chlor	romercuribenzoate	on the specif	ic activities of n	nicrosomal 3-h	rcuribenzoate on the specific activities of microsomal 3-hydroxysteroid dehydrogenases at the pH optimum	ydrogenases	at the pH optim	un
		NADPH				NADH			
Substrate	Formed products	pH optimum		Specific activity	ity mg prof.)	pH optimum		Specific activ (nmoles/min·	ity me prot.)
		without PCMB	with PCMB	without with PCMB	with PCMB	without PCMB	with PCMB	without with PCMB	with PCMB
Sa-DHT	3a-OH-steroids	6.0	6.0	27.8	7.0	6.0	7.0	41.2	18.2
5a-DHT	3g-OH-steroids	6.5	6.5	23.6	16.8	7.0	7.0	5.4	4.6
5g-DHT	3α-OH-steroids	6.5	6.5	29.0	7.3	6.5	7.0	44.8	9.3
5&-DHТ	3g-OH-steroids	6.5	6.5	12.0	3.3	8.5	7.5	7.7	5.2

tions 7–14 (enzymes not adsorbed to the column) were pooled and applied to the PCMB-Sepharose column (4 \times 3.5 cm) which was subsequently washed with 50 ml of the diluted buffer. The combined fractions (Nos. 3–10) were applied to the 3 β , 17 β -dihydroxy-5 α -androstane-Sepharose column (3.5 \times 6 cm) which was subsequently washed with 80 ml of the diluted buffer. Elution was carried out with 200 ml undiluted buffer containing 1 mM 5 α -DHT and 1 M KCl.

3. Results and discussion

The various 3-hydroxysteroid dehydrogenases in rat liver microsomes have probably different pH optima and show a different behaviour towards PCMB. The 3α -hydroxysteroid dehydrogenation by microsomes with NADH and NADPH as coenzymes as a pH optimum at 6.0-6.5 (table 1), whereas the 3α -hydroxysteroid dehydrogenase recently isolated by us has a pH optimum at 7.0. The formation of 3β -hydroxysteroids by rat liver microsomes is best carried out at pH 6.5-7.0 (with 5α -DHT as substrate and NADH and NADPH as coenzymes) or at pH 8.5 (5β -DHT, NADH) or at pH 6.5 (5β -DHT, NADPH). With intact microsomes a broad pH optimum curve is obtained due to the overlapping pH optima of the different 3-hydroxysteroid dehydrogenases.

The 3-hydroxysteroid dehydrogenases in rat liver microsomes are differently sensitive towards PCMB. Obviously there are 3-hydroxysteroid dehydrogenases which are inhibited by PCMB and others which are not inhibited. The 3β -hydroxysteroid dehydrogenation is much less inhibited than the 3α -hydroxysteroid dehydrogenation (table 1). In contrast the purified 3α -hydroxysteroid dehydrogenase [7] is not inhibited by 10^{-4} M PCMB. In the presence of PCMB the PCMB-sensitive 3-hydroxysteroid dehydrogenases are inhibited and the pH optimum curve represents the pH optimum of the PCMB-insensitive 3-hydroxysteroid dehydrogenases.

We have used the different behaviour of the 3-hydroxysteroid dehydrogenases towards PCMB for their separation by affinity chromatography on PCMB-Sepharose. After separation of the PCMB-insensitive 3α -hydroxysteroid dehydrogenase [7] on 5α -DHT-Sepharose a further separation is achieved by affinity chromatography on PCMB-Sepharose. Most of the

 3α -hydroxysteroid dehydrogenases are not adsorbed on the PCMB-Sepharose and may be further purified by affinity chromatography on 3β , 17β -dihydroxy- 5α -androstane-Sepharose. After elution with KCl (fig.1) an enzyme fraction is obtained which residuces 5α -DHT to 3β , 17β -dihydroxy- 5α -androstane and 5β -DHT to 3α , 17β -dihydroxy- 5β -androstane with NADPH as coenzyme, i.e. from both substrates only 3-hydroxysteroids with equatorial 3-hydroxy group are formed. Steroids with axial 3-hydroxy group are not formed under these conditions. The data of the purification of the 3-equatorial hydroxysteroid dehydrogenase are represented in table 2.

An equatorial 3-hydroxysteroid dehydrogenase has been presumed, but could not yet be isolated. The purified enzyme has a pH optimum at 6.3 (fig.1) and is not inhibited by 10^{-4} M PCMB. The elution diagram (fig.2) shows that there are possibly two further enzymes for the 3-hydroxysteroid dehydrogenation in the front fractions of the 3β , 17β -dihydroxy- 5α -androstane-Sepharose column which are to be studied in further investigations.

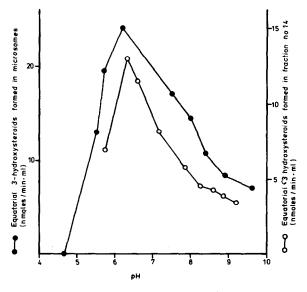


Fig.1. Influence of pH on the activity of the 3-equatorial hydroxysteroid dehydrogenase in liver microsomes; (•——•) 3.0 ml 0.2 M Tris-HCl, 0.8 mM NADPH, 0.1 mM 5β -DHT, 0.5 mg microsomal protein and in fraction No. 14 of the 3β , 17β -dihydroxy- 5α -androstane-Sepharose column (•——•) 3.0 ml potassium phosphate buffer, 0.8 mM NADPH, 0.1 mM 5α -DHT, 0.5 ml of fraction No. 14; 37° C, 5 min.

Table 2
Purification of the microsomal 3-equatorial hydroxysteroid dehydrogenase

Fraction	Vol (ml)	Protein (mg/ml)	Specific activity (nmoles/min·mg prot.)	Purification	Yield (%)	Ratio equatorial steroids axial steroids
Microsomes	10	28.0	3.02	1	100	0.21
Solubilized microsomes diluted 1:4	112	2.50	3.50	1.16	116.1	0.34
5α-DHT-Sepharose column, pooled front fractions	135	0.54	10.3	3.41	91.0	2.95
PCMB-Sepharose column, pooled front fractions	138	0.29	15.1	5.00	74.6	8.37
5α -androstane- 3β -ol-Sepharose column, eluate fraction 14	15	0.007	634.7	209	8.4	œ

The purification data were obtained with 5α -DHT (0.1 mM) as substrate and NADPH (0.8 mM) as cosubstrate in 0.2 M potassium phosphate buffer pH 7.0.

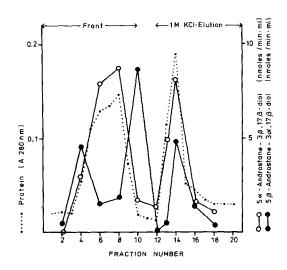


Fig. 2. Affinity chromatography on the 3β , 17β -dihydroxy- 5α -androstane-Sepharose column. Incubation conditions are the same as in fig.1.

References

- [1] Repke, K. and Samuels, L. T. (1964) Biochemistry 3, 689-695.
- [2] Shefer, S., Hauser, S. and Mosbach, E. M. (1966) J. Lipid Research 7, 763-771.
- [3] Rubin, B. L. and Strecker, H. J. (1961) Endocrinology 69, 257-267.
- [4] Björkhem, I., Danielsson, H. and Wikvall, K. (1973) Eur. J. Biochem. 36, 8-15.
- [5] Hoff, H.-G. and Schriefers, H. (1973) Hoppe-Seyler's Z. Physiol. Chem. 354, 507-513.
- [6] Björkhem, I. and Gustafsson, J. (1971) Eur. J. Biochem. 18, 207-213.
- [7] Golf, S. W., Graef, V. and Nowotny, E. (1976) Hoppe-Seyler's Z. Physiol. Chem. 357, 35-40.
- [8] Wallenfels, K., Zarnitz, M. L., Laule, G., Bender, H. and Keser, M. (1959) Biochem. Z. 331, 459-485.
- [9] Cuatrecasas, P. (1970) J. Biol. Chem. 245, 3059-3065.